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Abstract We present a method for bonding micrometer-thick metal wires together to produce 4-

wire Heytether for the Electric Solar Wind Sail (E-Sail). An E-Sail is composed of one hundred 20 

km long Heytethers. The aluminum tether features a base wire to which three interleaving loop 

wires are ultrasonically bonded. A multiwire tether provides micrometeoroid resistivity. The 

maximum sustainable pull strength of 99 % of the bonds must exceed 50 mN and no three 

consecutive bonds may be weaker than this limit value. 

We used a custom built tether factory to produce tether from 25 µm and 50 µm wires. To achieve 

fully automated ultrasonic wire-to-wire bonding, the factory utilizes the ultrasonic signal from a 

commercial 60 kHz bonder. The factory also features microcontrollers and optical feedback.  

The method was validated by producing a 1 km long continuous tether carrying 90.000 bonds. 

Image and text data of each bond were collected during production. The main production problem 

was aluminum accruing into the grooves of the bonding wedge. The wedge was manually cleaned 

seven times during this run. The average production rate was 1.4 m /hour. 

Six 15 m long tethers were fabricated in preparation for space tests. One piece was selected to fly 

with the EstCube-1 satellite in 2013. This mission experimentally determines the strength of the E-

Sail effect. Destructive pull tests were carried out on the other five tethers to determine the quality 

of the fabrication process. The measured average maximum sustainable pull force for unstrained 

bonds was (100 ± 5) mN.  

These results indicate that Heytether production could be automated to a degree where the 

production of a large-scale E-Sail, featuring 200 million wire-to-wire bonds, is possible.  
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Introduction The E-Sail is a space 

propulsion invention exploiting the dynamic 

pressure of the solar wind [1]. It uses 

centrifugally stretched positively charged 

conductive tethers to create thrust from the 

momentum flux of the solar wind. The 

tethers are kept charged by an onboard 

electron gun that disposes electrons from 

the spacecraft at the same rate as the tethers 

collect them from surrounding plasma. In 

space the tethers must be micrometeoroid 

resistant [2]. We use ultrasonic bonding to 

create an aluminum multiwire Heytether 

structure (Figs 1 & 3.) to address this issue. 

A 4-wire structure prolongs the expected 

lifetime of a 20 km long tether from 

minutes for a single wire structure to years [3]. An E-Sail composed of one hundred 20 km long 

tethers produces an estimated 1 N of thrust [4]. A large scale 1 N E-Sail requires over 200 million 

wire-to-wire bonds, 99% of which must sustain the centrifugal force created by the spin of the 

system. For a 20 km long tether this is simulated to be 50 mN. Moreover, no three consecutive 

bonds may be weaker than this limit value. In this paper we introduce an automatic process to 

produce a tether that satisfies these requirements. We also evaluate the quality of the produced 

construct. 

Methods Ultrasound bonding is widely used in the electronics industry to attach metal wires to 

metal plates. However, applying the method to interconnect two or more wires has not been 

reported before we published on tether production [5]. Continuing these efforts we have automated 

the tether production cycle and successfully developed a 4-wire production technique. 

The Tether Factory [6] (Fig. 2.) is a custom 

made device, designed to produce Heytether 

from three 25 μm by diameter AlSi(1%) loop 

wires and a 50 μm by diameter AlSi(1%) base 

wire.  

 

 
Figure 2. Successful bond (vertical bond wire 

after wedge retraction. (left), automatic tether 

factory (right). 

Fig 1. E-Sail concept. Centrifugally stretched 

multiline tethers are kept positively charged by an 

onboard electron gun. 
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To achieve fully automatic production it employs three open source Arduino Mega 2560 

microcontrollers, custom built electronics and software. It also employs a camera with dedicated 

image grabbing software. 

  The most important challenge in the process is to repeatedly and accurately place and fix the wires 

for bonding. The allowed lateral deviation in wire placement is (10 ± 2) µm. To achieve this target 

the clamps, tension arm and wire brake (which reduces vibrations in the wire due to spooling) must 

be crafted to 20 μm precision. 

  The Tether Factory holds the base wire firmly in place on a specially designed support wedge, Fig. 

3, by clamping it from both sides of the wedge, and by applying tension to the wire from above. To 

bond 4-wire tether, we use a specially designed bonding wedge that holds all the three upper wires 

concurrently, Fig. 3. This 3-wire wedge permits us to bond three loop wires separately onto a single 

base wire. An industrial 60 kHz K&S 4123 ultrasonic wire bonder performs the actual bonding. 

Success of each bonding is confirmed optically using a Veho VMS-004D USB microscope camera 

with NI Labview based image acquisition software. This inspection system is incorporated into the 

production cycle. It stops the process if a bond fails and places a new bond next to the failed one. 

Successful bond formation is identified by requiring that the loop wire leaves the bond vertically as 

the upper wedge is retracted. This is determined by automatic image analysis. 

Once bond formation has been confirmed, the wires are released, reeled on an output spool, and the 

factory is realigned in preparation for the next bond. During production, data on the bonding 

process is collected by the control software for post-production analysis. This includes one image of 

each bond obtained during the same phase of the production, bond count, and which wire is being 

bonded. 

 

Figure 3. 3-wire bonding wedge (left and middle) and support wedge (right). Rounded edges on the 

grooves highlighted. SEM images 80X-180X magnification. 

We set out to prove the capacity for full scale production by producing a 1 km long piece of 

Heytether that fulfills the ESAIL quality requirements [4]. This tether was reeled onto a standard 

Tanaka AL-2 50.3 mm diameter reel [7]. 

  Six separate 15 m long tethers were produced in preparation for the first experimental test of the 

E-Sail effect. These tethers were manufactured with the same production parameters as the 1 km 

tether. After initial pull tests, one of the samples was selected as flight model, to fly with the 

EstCube-1 miniature satellite in March 2013, Fig 4.   

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Destructive pull tests were carried out on the other five 15 m long tethers. Four 1 m long samples 

from each of these tethers were pull tested. They were sampled at 5 m intervals, Fig 5. On average, 

15 pulls were conducted for each of these samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Sampling scheme for the pull tests. 
 

Results With the Tether Factory we produced a continuous 1 km 4-wire Heytether containing 

90700 wire-to-wire bonds, Fig 4. It took us three weeks to produce the tether. The working 

production speed was 3 m /hour (1 bond/12 sec) whereas the average production speed for the 

whole duration was 1.4 m /hour. The bonding wedge was cleaned seven times during the 

production. 

 

The results of the image analysis are presented in Fig 6. These results show an increase in bond 

failure rate at the end of the wedge cleaning intervals. The failure rate levels off after the cleaning. 

Many unfixable bonds in succession is indicative of a mechanical fault in the tether factory. 

In summary: 375 failed bonds of which 287 were automatically fixed, on average 1000 bond long 

stretches (ca 10 m) without fail, longest such stretch being 7600 bonds (ca 76 m). Post fix there 

were no 3-consecutive-fails whereas there were eight 2-consecutive-fails situations. Initially one 
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Figure 4. Close up of bond and part of the tether, scale bar is 1 cm (top). 1 km of tether on 

its output spool (bottom-left) and 15m tether on the flight reel (bottom-right).  
 



 

step motor malfunctioned (large fail rate), and a servo partially broke down at 71000 bonds (even 

though previous life time tests indicated that it should be able to handle 500.000+ movements, data 

not shown). Key learning point: wedge cleaning is crucial and needs to be performed every 150 m 

(15000 bonds). Currently we are looking into whether it is possible to predict in-line when this 

intervention must be done (event prediction). 

 

Results of post production pull tests are presented in Fig 7. These results show that the factory 

produces sufficiently strong bonds also after the 1 km task. Since it also produced 10 g pull strength 

before we began the km production (data not shown), we conclude that the strength specification 

was fulfilled during the entire production. We also find that wedge fouling, Fig. 8., reduces bond 

strength in a manner correlating with the increased fail rate seen in Fig 6. By extrapolation we 

predict that cleaning the wedge every 150 m should ensure > 5 g pull strength. Finally we see that 

wedge cleaning restores the process to 10 g level. 

 

We would like to point out that the pull strength of the Tanaka 25 μm AlSi(1%) bonding wire is 13-

15g [7] compared to our highest measured pull strength during production (11.0 ± 0.4) g. A pull 

strength close to the wire’s tensile strength is possible thanks to the specially designed bonding 

wedge. Especially close attention was paid to rounding the edges of the grooves in order to 

minimize the stress to the neck of the bonds, Fig. 3. 

 

Our results show that the method works and that Heytether production can be automated to a degree 

where manufacture of a large-scale E-Sail is possible.  

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Failed and fixed bonds from the 1 km production data analysis. 



 

 

 

 
Figure 7. Measured average maximum sustainable pull force for EstCube tethers. A gradual 

decrease is seen as the total tether length increases. Five grams (5 g) represent the specified 

minimum pull strength. This extrapolation is supported by the production data in Fig 6. 

 

 

Figure 8. Clean (left) and fouled bonding wedge (right, 15000 bonds post cleaning). The grooves 

are contaminated with aluminum especially at the edges. Microscope images 500X magnification. 
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