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This paper analyzes the transfer orbits within a Sun�[EarthþMoon] system for a
spacecraft whose primary propulsion system is an Electric Solar Wind Sail. The planetary
system is approximated through the Circular Restricted Three Body Problem and the
spacecraft motion is studied in an optimal framework in which the performance index is
the flight time. Minimum time transfers are studied using an indirect approach, and the
optimal control law is found in analytical form as a function of the problem parameters.
Optimal transfers between equilibrium points are discussed and interesting symmetries in
the spacecraft trajectories are pointed out along with an analytical proof of their existence.
A mission scenario consistent with the Geostorm concept is analyzed and the effective-
ness of the propulsion system is emphasized for missions involving a tour through a
subset of the classical Lagrangian points.

& 2015 IAA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

The Electric Solar Wind Sail (E-sail) is an innovative
form of spacecraft propulsion system that exploits the
solar wind plasma momentum by repelling positive ions
using a number of long tethers biased at a high positive
voltage [1–3]. Similar to other continuous thrust propul-
sion systems, an E-sail enables a wide range of new
mission concepts [4] such as, for example, the generation
of Artificial Equilibrium Points (AEPs) within an helio-
centric mission scenario. An AEP may be thought of as a
special case of a spacecraft motion within a Circular
Restricted Three Body Problem (CRTBP). The dynamics of
a massless point in the CRTBP is a classical mathematical
model [5] that is usually adopted to approximate the
spacecraft motion within the Earth–Moon system or the
Sun–[EarthþMoon] system [6–8].
ll rights reserved.
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A thorough analysis of mission applications involving
AEPs has been addressed in recent years. In particular,
different studies regarding the use of solar sails [9], E-sails
[10,11], and electric thrusters [12] have shown the exis-
tence of infinite equilibrium surfaces in the CRTBP. The
shape of those surfaces depends on both the physical
characteristics of the celestial bodies involved in the
problem and the spacecraft propulsive capabilities, in
terms of maximum propulsive acceleration and technolo-
gical constraints associated to the thrust direction.

In a typical mission scenario involving the use of an AEP,
the spacecraft is required to exploit the propulsion system
acceleration to reach and maintain one point of the equili-
brium surfaces over a sufficiently long time period [13].
However, the availability of a continuous thrust also allows
the spacecraft to be moved among different targets within
the set of accessible equilibrium points. This capability makes
the mission more flexible, as different mission objectives can
be reached using a single spacecraft in a sufficiently large
time interval. In this context, another interesting possibility
is to initially release multiple spacecraft at the same AEP, and
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Nomenclature

aP propulsive acceleration vector
ac spacecraft characteristic acceleration
C system's center-of-mass
G universal gravitational constant
î; ĵ ; k̂ unit vectors of the synodic frame
J performance index
l Sun�[EarthþMoon] distance (with l¼ 1 au)
m mass
E auxiliary matrix, see Eq. (9)
r dimensionless spacecraft position vector (w.r.

t. C)
t time
v dimensionless velocity (derivative of r w.r.t. ν)
α cone angle
β lightness number
λs vector adjoint to variable s
μ dimensionless mass
ν angular variable

ρ dimensionless celestial body-spacecraft vector
(with ρ¼ JρJ)

τ switching parameter

Subscripts

0 artificial equilibrium point
f final
gs Geostorm mission case
i initial
Lj classical Lagrangian point (with j¼ 1…5)
max maximum
� EarthþMoon
� Sun

Superscripts

0 derivative w.r.t. ν
4 unit vector
� depending on the controls
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then displace each spacecraft at different pre-selected AEP
locations, similar to what is required by the L1-Diamond
mission concept proposed by Sauer [14] about 10 years ago.
More recent studies [15,16], exploring potential and innova-
tive applications of solar sails, have started to investigate also
the transfer between a given set of AEPs by inspecting, for
example, the linear dynamics of the spacecraft around its
equilibrium point.

This paper analyzes the time-optimal transfer between
equilibrium points within the Sun–[EarthþMoon] system
for an E-sail based spacecraft. Within this context, the new
contribution is to develop a mathematical model where,
using an indirect approach, the optimal control law is
obtained in an analytical form as a function of the state
variables involved in the problem. The control law is then
applied for simulating minimum time trajectories and
investigating the E-sail performance. In particular, two
different mission scenarios are discussed in detail. The
first one, which is consistent with the Geostorm mission
concept [13], concerns the optimal transfer between the
classical L1 point and a collinear AEP (that is, a point along
the segment between Sun and EarthþMoon). The second
mission example refers to a tour through a subset of the
classical Lagrangian points. The problem considered is to
find the minimum transfer time, for all of the pairs of
points within the set, using an E-sail based spacecraft with
a given (canonical) characteristic acceleration.

The results discussed in this paper are part of an
European research project [3,17,18] regarding the study
and development of an E-sail thruster, and are intended to
contribute to the definition of the set of possible scenarios
[4] within which a selection is to be made for testing the
practical feasibility of the propulsion system in a real
mission. For this reason no performance comparison is
made here with other propellantless thrusters, such as
solar sails, nor with other low-thrust propulsion systems,
as, for example, electric thrusters. As a matter of fact such
a comparison would imply an analysis of the spacecraft
mass budget, which is however well beyond the scope of
this work.

The paper is organized as follows. The first section
illustrates the mathematical model used for the study of
spacecraft dynamics in the CRTBP and for the calculation
of the optimal trajectory. It also includes a detailed
discussion of the steering law, how it has been obtained
with an indirect approach and the definition of the Two-
Point Boundary Value Problem (TPBVP) associated to the
optimization problem. The methodology used to solve the
TPBVP is only briefly summarized as the numerical tech-
niques are well known. Section 3 involves the application
of the mathematical model to the two mission scenarios
that have been described above. This section also contains
an analysis of the symmetric structure arising from the
optimal trajectory. Such a symmetry finds a practical
application in the solution of the TPBVP. Some final
remarks conclude, as usual, the paper.

2. Mathematical model

The motion of the E-sail-based spacecraft is governed
by the gravitational field of the two massive bodies (i.e.,
the Sun of mass m� and the EarthþMoon of mass m� )
and by the thrust due to the E-sail propulsion system.
Assuming a circular EarthþMoon orbit around the Sun,
the spacecraft motion can be conveniently described
within a synodic (rotating) reference frame T ðC; x; y; zÞ,
having its origin at the system's center-of-mass C, with
unit vectors î; ĵ and k̂ , see Fig. 1.

Let G be the universal gravitational constant,
μ9m� =ðm� þm� Þ � 3:0404� 10�6 the dimensionless
mass of EarthþMoon, and l91 au the Sun–[EarthþMoon]
distance (a constant value in the CRTBP). Let also ρ� ;ρ� ,
and r (with ρ� ¼ Jρ� J and ρ� ¼ Jρ� J) be the spacecraft
dimensionless position vectors, see Fig. 1. The
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Fig. 1. Schematic of the Sun�[EarthþMoon] CRTBP with E-sail based
spacecraft.
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dimensionless spacecraft equations of motion in the syno-
dic reference frame T are [19]

r0 ¼ v ð1Þ

v0 ¼ l2

G m� þm�ð Þ aP�
1�μ
ρ3�

ρ� � μ
ρ3�

ρ� � k̂

� k̂ � r
� �

�2 k̂ � v ð2Þ

where the prime symbol denotes a derivative taken with
respect to the angular variable νZ0 and

ρ� 9ρ� ρ̂� ¼ rþμî;ρ� 9ρ� ρ̂� ¼ r�ð1�μÞî ð3Þ

Taking into account the recent plasmadynamic simulations
[3] about the E-sail behaviour in the interplanetary space,
the spacecraft propulsive acceleration in the CRTBP can be
written as [11]

aP ¼ β
G m�
l2 ρ�

τ âP ð4Þ

with âP9aP=JaP J . The propulsive acceleration modulus is
known to be inversely proportional to the Sun-spacecraft
distance [20], that is, JaP J varies proportional to 1=ρ� .
Also, τAf0; 1g is a switching parameter that models the E-
sail on/off condition and is introduced to account for
coasting arcs in the spacecraft trajectory. Finally, β is the
sail lightness number, defined as the ratio of the maximum
propulsive acceleration modulus to the Sun's gravitational
acceleration (G m� =l2) at the reference distance l. The sail
lightness number β is a fundamental design parameter
that quantifies the spacecraft's propulsive performance. It
is closely related to the spacecraft characteristic accelera-
tion ac through the expression ac9βGm� =l2C5:93β,
where ac is given in millimeter per second squared. Recall
that ac is the maximum value of the propulsive
acceleration modulus when the Sun-spacecraft distance
is one astronomical unit.

As a consequence of the assumption that the celestial
bodies cover circular orbits about their center of mass C,
the time t turns out to be a linear function of ν, i.e.
dν=dt ¼ω, where the constant ω¼ 360=365:25 deg=day
coincides with the Earth's orbital angular velocity. In
addition to the switching parameter, the second control
variable is the thrust direction âP. The angle between the
Sun-sailcraft line and the thrust vector, referred to as sail
cone angle α, cannot exceed a maximum value αmax, which
is here set equal to αmax930 deg. From Fig. 1 the math-
ematical constraint, when the thrust is switched on, is
therefore

arccos âP � ρ̂�
� �

rαmax ð5Þ

Note that the propulsive acceleration modulus is only
dependent on the Sun-spacecraft distance. In other terms,
the thrust of the sail is assumed to be independent of its
direction within the allowable cone.

The problem addressed in this paper is to find the
minimum-time spacecraft trajectory that transfers the
spacecraft from a given initial state ri; vif g to a given final
state rf ; vf

� �
. The time histories of the two control

variables τ and âP are hence obtained by solving an
optimal control problem.

Assume, without loss of generality, that the initial
angular position be νi9νðtiÞ ¼ 0. Since the time varies
linearly with ν, the minimum-time problem consists of
minimizing the angular position νf 9νðtf Þ, where tf is the
time at the end of the transfer. This amounts to finding the
trajectory that maximizes the performance index J9�νf .
The optimal trajectory is sought using the dimensionless
equations of motion (1)–(2), in which ν is the independent
variable. Using an indirect approach, the minimum-time
problem can be solved by maximizing the Hamiltonian

H¼ λr � r0 þλv � v0 ð6Þ
where λr and λv are the vectors adjoint to r and v,
respectively. The time-derivatives of λr and λv are given
by the Euler–Lagrange equations that, taking into account
Eqs. (3) and (6), assume the compact form

λ0r9�∂H
∂r

¼ ð1�μÞ
ρ3�

I�3 ρ̂� ρ̂�
� �þ μ

ρ3�
I�3 ρ̂� ρ̂�
� ��

þβ τ
ð1�μÞ
ρ2�

ρ̂� âPþE2
	
� λv ð7Þ

λ0v9�∂H
∂v

¼ �λr�2 E � λv ð8Þ

where I is the 3�3 identity matrix and

E9

0 �1 0
1 0 0
0 0 0

2
64

3
75 ð9Þ

From Pontryagin's maximum principle, the optimal control
law maximizes, for any value of ν, a reduced Hamiltonian
~H, corresponding to the portion of H that explicitly
depends on the controls τ and âP. Taking into account
Eq. (4), the reduced Hamiltonian is
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~H ¼ τ âP � λ̂v ð10Þ
Let θA ½0; π	 rad be the primer vector orientation angle, i.e.
the angle between the direction of the primer vector λv
and the direction of the Sun-spacecraft position vector ρ� ,
viz.

θ¼ arccos ρ̂� � λ̂v

� �
ð11Þ

Eq. (10) states that the optimal propulsive thrust direction
is such to maximize the admissible projection of aP along
λv. As a result, recalling the constraint (5), if θrαmax the
thrust must be switched on (τ¼ 1) and the propulsive
acceleration is aligned along λv, that is, âP ¼ λ̂v. If, instead,
θ4 ðαmax þπ=2Þ, the thrust must be off (τ¼ 0) otherwise
~H would be negative. Finally, if θAðαmax ; αmax þπ=2	, the
thrust is on (τ¼ 1), the cone angle is at its maximum
(α¼ αmax ), the three unit vectors âP, λ̂v and ρ̂� are
coplanar, and the thrust direction is between the direc-
tions of λ̂v and ρ̂� . To summarize, the optimal control law
is

τ¼
0 if θ4αmaxþπ=2
1 if θrαmaxþπ=2

(
ð12Þ

âP ¼
λ̂v if θrαmax

sin ðθ�αmaxÞ
sinθ

ρ̂� þ sinαmax

sinθ
λ̂v if θA ðαmax;αmaxþπ=2	

8><
>:

ð13Þ
The differential system is constituted by the equations of
motion Eqs. (1)–(2), and by the Euler–Lagrange equations
(7)–(8), whose control laws are given by Eqs. (12) and (13).
The differential system is completed by twelve scalar
boundary conditions, corresponding to the six components
of the initial state vector ri; vif g and the six components of
the final state vector rf ; vf

� �
. The trasversality condition

[21], Hðνf Þ ¼ 1, is used to find the minimum value of νf.
The transfer analysis is much simplified for a two-

dimensional problem, corresponding, for example, to a
situation in which the transfer trajectories are in the
ecliptic plane, or in the plane (x,y) of the synodic reference
frame. This is the simplified mission scenario adopted in
the succeeding analysis. Its practical importance will be
discussed in the next section. Note that the resulting
trajectories, albeit two-dimensional, have been validated
using the full (three-dimensional) model of the spacecraft
dynamics.

3. Mission applications

The previous minimum-time problem has been
adopted to investigate two different mission applications
involving the transfer trajectory of an E-sail spacecraft
between two equilibrium points. In all of the numerical
simulations the differential equations have been inte-
grated in double precision using a variable order Adams–
Bashforth–Moulton solver scheme [22,23] with absolute
and relative errors of 10�12. The TPBVP associated to the
optimization process has been solved, with an absolute
error less than 10�8, through a hybrid numerical techni-
que that combines genetic algorithms to obtain a first
estimate of the four adjoint variables unknown, with
gradient-based and direct methods to refine the solution.

It is worth noting that solving the TPBVP can only
guarantee that the first order necessary conditions for the
optimization are satisfied. For that reason a suitable
procedure has been adopted to reduce the possibility of
the solution converging to a local maximum. In particular,
for each mission scenario the TPBVP has been solved
starting from different initial guess solutions. The “candi-
date” optimal value is chosen to correspond to the max-
imum value of the performance index J within the set of
the results obtained. The solution thus obtained is then
perturbed by slightly varying the unknown variables. The
TPBVP is solved again to check whether the new solution
still converges to the same performance index. Although
the above procedure does not guarantee the global optim-
ality of the solution, it has been successfully used by the
authors in a number of different mission scenarios. The
following results can therefore be considered as minimum
time solutions at least in the spirit of a preliminary mission
analysis.
3.1. Geostorm mission scenario

The first case discussed is inspired by the Geostorm
Warning Mission [13,24], now the Heliostorm mission
[25], whose aim is to provide an early warning of possible
geomagnetic storms. The fundamental mission require-
ment is to transfer a spacecraft at a collinear (closer to the
Sun) AEP of the Sun–Earth system, whose distance from
the planet is twice as much as the distance of the natural
Lagrangian point L1. Such an AEP location, referred to as
Pgs, must then be maintained for a prolonged mission time
by means of a suitable propulsion system. For example, the
operating time requirement for the Geostorm mission was
between 3 and 5 years [13]. The only way to guarantee
such a time requirement is to use a propellantless thruster.
The original mission was indeed conceived for a solar sail
spacecraft [26], but the same mission scenario has been
recently revisited [27] to quantify the performance of an E-
sail, with particular attention to the generation of halo
orbits around the AEP.

In this case, the problem is to investigate the minimum-
time trajectories between L1 and Pgs for an E-sail based
spacecraft. This situation is consistent, for example, with that
discussed in Ref. [16], in which a spacecraft equipped with a
propellantless propulsion system is initially parked at L1, and
is then transferred to another AEP to accomplish the mission.
The positions of the two points in the synodic frame are
½rL1 	T ¼ ½xL1=l; 0; 0	T, and ½rgs	T ¼ ½ð2xL1=lþμ�1Þ; 0; 0	T,
where xL1=l¼ 0:99.

The lightness number used in the simulations is
βC0:0526, corresponding to a characteristic acceleration
of about acC0:3122 mm=s2. The latter is the value
required to maintain a spacecraft at Pgs, as it can be
verified through the results taken from Ref. [11]. Using
the boundary conditions ri ¼ rL1 , rf ¼ rgs, and vi ¼ vf ¼ 0,
the solution of the TPBVP provides the optimal trajectory
drawn in Fig. 2. This trajectory all belongs to the
ecliptic plane.
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Fig. 2. Optimal transfer trajectory in the Geostorm scenario (solid line:
τ¼ 1, dashed line: τ¼ 0).

Fig. 3. Optimal transfer in the Geostorm scenario: components of r and v
as a function of ν.

Table 1
Position, in the (x,y) plane, of the classical Lagrangian points.

Lagran. point Position

x=l y=l z=l

L1 0.99 0 0
L3 �1 0 0
L4 0.5 0.866 0
L5 0.5 �0.866 0

Table 2
Optimal flight times, in days, between pairs of Lagrangian points
(ac ¼ 1 mm/s2).

Starting point Final point

L1 L3 L4 L5

L1 – 475 445 287
L3 475 – 390 553
L4 287 553 – 390
L5 445 390 553 –
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The optimal angle swept by the EarthþMoon during
the spacecraft displacement is νf ¼ 250:6 deg, which cor-
responds to a minimum flight-time of about 254 days. The
dimensionless components of the spacecraft position and
velocity vectors are shown in Fig. 3 as a function of the
angular position. A significant portion of the optimal
trajectory, longer than one half of the total transfer time,
is flown with the thruster switched off (τ¼ 0). In parti-
cular, Fig. 3 emphasizes the presence of two coasting arcs.
The second arc is engaged shortly before the conclusion of
the mission, which, indeed, ends with a coasting phase.
Note, however, that the E-sail must be switched on again
as soon as the spacecraft reaches the target AEP, where the
spacecraft thrust must be aligned along the Sun–[Earth-
þMoon] direction to meet the equilibrium conditions and
maintain the AEP location [11].

3.2. Motion between Lagrangian points

The second mission scenario involves the transfer
between a subset of the classical Lagrangian points [15].
The coordinates of the points involved in the problem, L1,
L3, L4, and L5, are summarized in Table 1. The fifth classical
Lagrangian point, L2, has not been considered in this study
because the effectiveness of the propulsion system around
that point could be much affected by the solar wind
interaction with Earth's magnetosphere.

The minimum-time transfer trajectory between each
pair of AEPs in Table 1 has been calculated assuming a
spacecraft characteristic acceleration ac ¼ 1 mm=s2, corre-
sponding to a sail lightness number βC0:1686. In all of
the simulations, the initial and final (relative) velocities in
the synodic frame were set equal to zero, i.e. vi 
 vf ¼ 0.
Such a choice models a situation in which the spacecraft
maintains the AEP position for a suitable time interval,
whose length is, however, not included in the optimization
process, but it is related to other mission constraints. The
minimum flight times for the 12 optimal transfer trajec-
tories have been summarized in Table 2.

It is worth noting that the symmetry in the transfer
times is highlighted in some entries of Table 2. For
example, the transfer time from L4 to L1 is the same as
the time from L1 to L5. Likewise, the transfer time between
L5 and L3 equals that from L4 and L5. These symmetries
arise from the fact that Eqs. (1)–(4) are invariant under the
transformation (r, r0, τ, âP, t) - (Tr, �Tr0, τ, TâP, �t),
where T9diagð1; �1; 1Þ. Such a transformation extends
a similar result that applies to trajectories in the CRTBP
[28] in the ballistic case (i.e., when β¼ 0, or the propulsion
system is always switched-off). Note that the existence of
these symmetries reduces the possibility that the solution
of the TPBVP associated to the optimum problem may
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converge to a local maximum of the performance index J.
In fact, the symmetry condition represents a further means
to compare different solutions and exclude possible sub-
optimal trajectories. Such an expedient has been success-
fully used to avoid the convergence toward local maxima,
a problem that has been experienced especially in the
transfers between L4 and L3.

The same symmetry existing in the transfer times is
also apparent in the spacecraft optimal trajectories
between Lagrangian points drawn in Fig. 4. For the sake
of clearness the figure is divided in two parts according to
whether the generic trajectory involves the point L3 (see
Fig. 4(a)) or not (see Fig. 4(b)). The coasting phases are
illustrated with dashed lines and the arrows point out the
direction of motion. Unlike the case discussed in the
previous section, in this example the mission starts and
ends with a propelled arc. However, when the generic
Lagrangian point is reached, the spacecraft thrust must be
switched-off to maintain the relative equilibrium position.

From the data of Table 2, and using the sequence
L1-L5-L3-L4-L1, an E-sail based spacecraft with a
Fig. 4. Optimal transfer trajectories between Lagrangian points when
ac ¼ 1 mm/s2 (solid line: τ¼ 1, dashed line: τ¼ 0). (a) Trajectories without
L3. (b) Trajectories towards/from L3.

Fig. 5. Optimal tour of the Lagrangian points when ac ¼ 1 mm/s2 (solid
line: τ¼ 1, dashed line: τ¼ 0).
characteristic acceleration of 1 mm=s2 may complete a
tour of the four Lagrangian points within a total flight
time of 1354 days (about 3.71 years). The corresponding
optimal trajectory tracked by the spacecraft is illustrated
in Fig. 5, which also shows the length of the various
coasting phases. The sum of all coasting times amounts
to about 16%, thus confirming the crucial contribution of
the propulsion system for obtaining the minimum time
trajectory. The flight parameters thus obtained represent a
fundamental starting point for a succeeding mission ana-
lysis, including the effects of the solar wind variation on
the capability of maintaining a given AEP, and for a further
refinement of the transfer performance evaluation.

4. Conclusions

Minimum time trajectories for an electric solar wind
sail have been studied within the circular restricted three
body problem constituted by the Sun and the Earth-
þMoon. The problem has been addressed using a varia-
tional approach and has been applied to two different
mission scenarios. An Electric Solar Wind Sail of modest
performance is sufficient for reaching and maintaining a
collinear artificial equilibrium point located at a distance
from the Earth twice as much as the distance of the
classical point L1. The minimum transfer time necessary
to reach the artificial collinear equilibrium point is about
250 days.

As a second example, a complete tour of a subset of the
classical Lagrangian points has been shown to be feasible
in less than four years, using a spacecraft with a char-
acteristic acceleration of 1 mm=s2. The transfer trajectories
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confirm interesting symmetries that arise from the struc-
ture of the equation of motion. The presence of those
symmetries in the transfer trajectories, which has been
demonstrated in an analytic form, represents an original
contribution of the paper. This results extends a similar
well-known property of ballistic transfers within the
Circular Restricted Three Body Problem. The simulation
data can be used as a starting point for a more accurate
mission analysis that should take into account the actual
eccentricities of the planetary orbits and the significant
thrust reduction associated to a spacecraft entry into the
Earth's magnetosphere. A natural extension of this work
could take into account the effects of a change in the sail
performance parameter, for example a time variation in
the sail voltage, which induces a change in the character-
istic acceleration during the transfer. Indeed, more flex-
ibility in the trajectory design can be obtained by
considering the characteristic acceleration as an additional
control means.
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