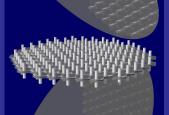
Terraforming the dwarf planet: Interconnected and growable Ceres megasatellite world


Pekka Janhunen

Finnish Meteorological Institute, Finland Also at:

- Aurora Propulsion Technologies Oy, Finland
- University of Tartu, Estonia

Outline

How people wish to live

- Satisfying the requirements
- Ceres as source body
- Growing Ceres megasatellite

Concentrating sunlight into the habitats

Mass budget

Resource limits

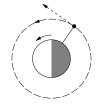
Conclusions

How people wish to live

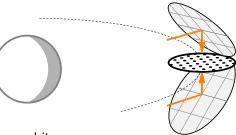
- Earthlike...
 - Earthlike radiation shielding
 - Earthlike atmosphere
 - 1 g gravity
 - 24 h diurnal cycle with 130 W/m² insolation, like in southern Germany
 - Nature, fields, parks, forests
 - Population density 500 /km², like in the Netherlands
 - Large, interconnected world
- ... but better than Earth:
 - No adverse weather
 - No natural disasters
 - Growable to larger living area than Earth
- Long-term sustainable
 - All atoms are circulated

Satisfying the requirements

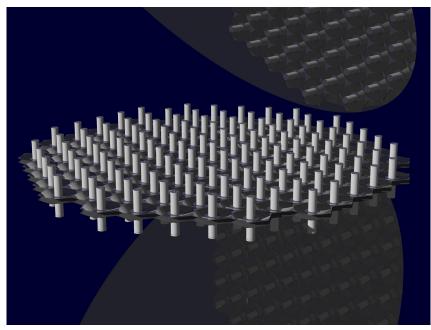
- Moon and Mars: wrong gravity, and smaller living area than Earth
- Free-flying rotating cylindrical settlements: lack of interconnectivity with each other (except using rocket propulsion, which is not long-term sustainable because propellant atoms cannot be circulated)
 - The cylinder radius has an upper limit coming from the tensile strength of the walls
 - Formation flight of cylinders might work, but bears the collision risk, and propellantless travel between the cylinders is a challenge


The solution:

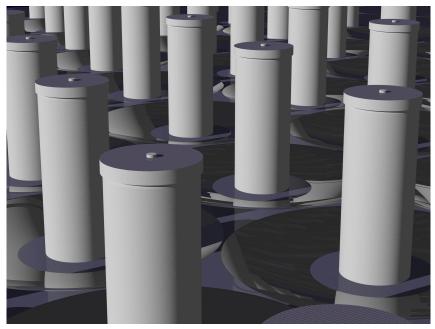
- Attach rotating habitat cylinders to a rigid frame (megasatellite)
 - The frame is < 1 % of the mass budget, because it is in microgravity
- The geometry is selected to be self-similarly growable
- Use magnetic bearings, then there are no sliding/wearing surfaces
 - Inductrack-type bearings are passively safe


Ceres as source body

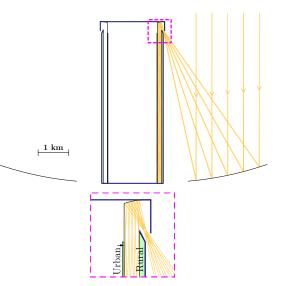
- Dwarf planet Ceres: 940 km, largest body of the main belt, 30% of belt mass
- Ceres has nitrogen
 - N₂ is necessary for the settlement's atmosphere
 - (One might also select a carbonaceous asteroid, but those of sufficient size and low eccentricity are almost as far as Ceres, and they probably have less nitrogen)
- Orbit Ceres
 - So that we do not drift away, to keep material transfer time short
 - Use high circular orbit to minimise tidal forces: adopt 100,000 km orbit (Hill's sphere radius is 207,000 km)
- Space elevator is an economical way to lift the material
 - Elevator cable length is 1024 km
 - Cable strength requirement is straightforward to meet
 - Lifting needs only 54 kJ/kg of energy
 - After elevator, need 20 m/s of delta-v to circularise orbit



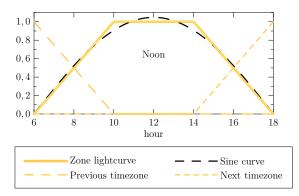
Growing Ceres megasatellite

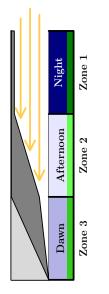


- Disk-shaped megasatellite in equatorial Ceres orbit
- Spinning habitats on both sides of the disk
- Add 45° inclined mirrors to gather sunlight
- Reaction wheels are not needed
 - No tidal torque because of disk symmetry
 - Ceres orbit eccentricity makes $\pm 8.7^{\rm o}$ nutation, but handled by tilting mirror elements
- Self-similarly growable at the edges, like any city



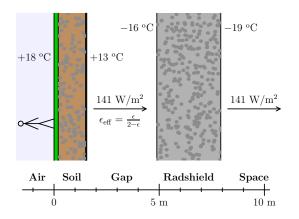
Concentrating sunlight into the habitats


- Cylinder radius 1 km, length 5 km
- Primary and secondary mirrors inject parallel light into light channel
 - Light channel width 137 m follows from Sun's angular diameter
- 50 m high sunlit rural space, 1100 m²/person, 1.5 m of soil to enable trees (upgradable to 4 m, at cost of doubled manufacturing energy)
- 15 m high LED-lighted urban space, 900 m²/person, 81 % gravity



Synthetic diurnal cycle

- 3 timezones, ± 8 h time differences
- Light channel has adjustably sloped ceiling to create the wanted light level in each zone
- Sum over zones is constant: no light is lost



Thermal design

- Vacuum gap between rotating and non-rotating parts
- Soil and radshield use internal liquid heat transfer, because soil is rather pool thermal conductor
 - In soil, heat transfer fluid can be water
 - In radshield, e.g. light hydrocarbon, e.g. heptane
- If needed, vacuum gap walls can be zigzagged to increase cooling by increased radiation transfer area

Interconnectivity

Fast and easy travel is necessary, and it must be propellantless to be sustainable

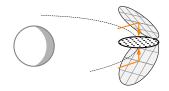
- The straightforward way:
 - Travel vehicles (cars/trains/elevators...) operate in zero gravity tunnels
 - Entry and exit at cylinder axes
 - Passengers experience weightlessness during trip
- The Anti-Vomit way (can coexist with the straightforward way):
 - Entry and exit at cylinder's rotating perimeter
 - · Vehicles move at constant speed i.e. the rotation speed
 - Tracks/roads are spiralled to create gravity also during trip
 - Passengers do not experience weightlessness
- Vacuum or atmosphere design options
 - If vacuum, vehicles move through airlocks, or passengers do it and wear spacesuits
 - If atmosphere, noise might be an issue power consumption is not
- Radshielding of the tunnels is likely unnecesary, because time spent is short

Mass budget

For 2000 m²/person

Stationary radshield walls	Ceres soil	6712 t/person	69 %
Soil and biosphere	From Ceres soil	2482 t/person	25 %
Tensile structural parts	Piano wire (Fe)	484 t/person	5%
Air	N_2, O_2	97 t/person	1%
Reflectors, structures			<1%
Total	\sim	10,000 t/person	100 %

- 94 % of mass is radshield+soil+biosphere, which do not need much processing
- The main energy goes into production of tensile material
 - Baseline is piano wire (99% Fe)
 - Other possibilities: dyneema, carbon fibre, glass/basalt fibre, ...
- No need to abandon any Ceres material: radshields are our trashbin (as long as $\gtrsim 0.75$ % of Ceres material is nitrogen, for the atmosphere)



Resource limits

- Mass 5000 kg/m 2 per living area, 10^7 kg/person
- Production energy 5 GJ/m² per living area, 10^{13} J/person
- For example, $10^{18}~{\rm kg}$ megasat for $10^{11}~{\rm people}$ needs 0.1 % of Ceres mass and 3 % of its angular momentum
 - Living area 200 million km² larger than Earth's continents
- If power system doubling time is 4 months, bootstrapping time is 10 years
 - 30 doublings from kW to TW power level
 - The elevator is no bottleneck, it lifts material quickly
 - Physics would not preclude rapid bootstrapping
- After bootstrapping, growth is limited by Ceres surface area, but the limit is high:
 - If one covers 20 % of Ceres by solar panels \Rightarrow 300 million new people per year
 - For comparison, present population growth is 80 million per year

Conclusions

- Interconnected megasatellite world in Ceres orbit
- Land with 1.5 m of soil, natural sunlight, 24 h day/night cycle
- Population density of 500 people/km², like Netherlands
- Economical, because can lift Ceres materials by space elevator
- Long-term sustainable, all atoms circulate
- Growable to at least beyond 10^{11} people

Acknowledgements

- The author thanks Kadri Bussov for discussions that led to changing the geometry and Sini Merikallio and Al Globus for commenting the manuscript.
- The results presented have been achieved under the framework of the Finnish Centre of Excellence in Research of Sustainable Space (Academy of Finland grant number 312356)

